ATProto Browser

ATProto Browser

Experimental browser for the Atmosphere

Post

Do LLMs understand probability distributions? Can they serve as effective simulators of probability? No! However, in our latest paper that via in-context learning, LLMs update their broken priors in a manner akin to Bayseian updating. šŸ“ arxiv.org/abs/2503.04722

Mar 10, 2025, 5:32 PM

Record data

{
  "uri": "at://did:plc:5ugfdqftlt7isp4lvn5hykb2/app.bsky.feed.post/3lk23gy6bd22p",
  "cid": "bafyreibruexiplkhedteqeygtiulhx6zexuny5qsjryw7ypfpv5gpe7epe",
  "value": {
    "text": "Do LLMs understand probability distributions? Can they serve as effective simulators of probability? No!\nHowever, in our latest paper that via in-context learning, LLMs update their broken priors in a manner akin to Bayseian updating.\n\nšŸ“ arxiv.org/abs/2503.04722",
    "$type": "app.bsky.feed.post",
    "embed": {
      "$type": "app.bsky.embed.external",
      "external": {
        "uri": "https://arxiv.org/abs/2503.04722",
        "thumb": {
          "$type": "blob",
          "ref": {
            "$link": "bafkreifybtmgi5p3pxui3jso5onrtykvylqrbt6lrralsflgppistcbdie"
          },
          "mimeType": "image/jpeg",
          "size": 178482
        },
        "title": "Enough Coin Flips Can Make LLMs Act Bayesian",
        "description": "Large language models (LLMs) exhibit the ability to generalize given few-shot examples in their input prompt, an emergent capability known as in-context learning (ICL). We investigate whether LLMs uti..."
      }
    },
    "langs": [
      "en"
    ],
    "facets": [
      {
        "index": {
          "byteEnd": 265,
          "byteStart": 241
        },
        "features": [
          {
            "uri": "https://arxiv.org/abs/2503.04722",
            "$type": "app.bsky.richtext.facet#link"
          }
        ]
      }
    ],
    "createdAt": "2025-03-10T17:32:06.388Z"
  }
}