Experimental browser for the Atmosphere
We explore one such approach: the DQN approach introduced in 2013 by Mnih et al, in which playing Atari games is approached through a synthesis of Deep Neural Networks and TD-Learning #ML #AI #NeuralNetworks
Feb 18, 2025, 11:07 PM
{ "uri": "at://did:plc:zwzdlsvtvlxnpuacwhmqmd22/app.bsky.feed.post/3liieuiljcc23", "cid": "bafyreiaog6lxqn4uisqvcducu3mucm63sh6oauntyt3mkfqe66nqg5kwxi", "value": { "text": "We explore one such approach: the DQN approach introduced in 2013 by Mnih et al, in which playing Atari games is approached through a synthesis of Deep Neural Networks and TD-Learning #ML #AI #NeuralNetworks", "$type": "app.bsky.feed.post", "embed": { "$type": "app.bsky.embed.external", "external": { "uri": "https://towardsdatascience.com/learning-how-to-play-atari-games-through-deep-neural-networks/", "thumb": { "$type": "blob", "ref": { "$link": "bafkreicoxy4okgb4r6ypcbqb4cjn3kxdiamyw3cglztjshuwnxmllxktpu" }, "mimeType": "image/jpeg", "size": 163660 }, "title": "Learning How to Play Atari Games Through Deep Neural Networks | Towards Data Science", "description": "In July 1959, Arthur Samuel developed one of the first agents to play the game of checkers. What constitutes an agent that plays checkers can be best described in Samuel’s own words, “…a computer [tha..." } }, "langs": [ "en" ], "facets": [ { "index": { "byteEnd": 187, "byteStart": 184 }, "features": [ { "tag": "ML", "$type": "app.bsky.richtext.facet#tag" } ] }, { "index": { "byteEnd": 191, "byteStart": 188 }, "features": [ { "tag": "AI", "$type": "app.bsky.richtext.facet#tag" } ] }, { "index": { "byteEnd": 207, "byteStart": 192 }, "features": [ { "tag": "NeuralNetworks", "$type": "app.bsky.richtext.facet#tag" } ] } ], "createdAt": "2025-02-18T23:07:36.566Z" } }