Experimental browser for the Atmosphere
As the race to move AI agents from prototype to production heats up, the need for a standardized way for agents to call tools across different providers is pressing. MCP gives us a shared language and the democratization of tool calling. #AI #ML #AIAgents
Mar 31, 2025, 3:22 PM
{ "uri": "at://did:plc:zwzdlsvtvlxnpuacwhmqmd22/app.bsky.feed.post/3llonxr2gy22a", "cid": "bafyreierwqqawohl35tzq22p76mxiamf5irgs2gzmq7cp3i2msk43ip54q", "value": { "text": "As the race to move AI agents from prototype to production heats up, the need for a standardized way for agents to call tools across different providers is pressing. MCP gives us a shared language and the democratization of tool calling. #AI #ML #AIAgents", "$type": "app.bsky.feed.post", "embed": { "$type": "app.bsky.embed.external", "external": { "uri": "https://towardsdatascience.com/clear-intro-to-mcp/", "thumb": { "$type": "blob", "ref": { "$link": "bafkreih45h3rtmjv3shue5hseaqcoep54moh36fc2bato4gm4zi5cnw4ka" }, "mimeType": "image/jpeg", "size": 853458 }, "title": "A Clear Intro to MCP (Model Context Protocol) with Code Examples | Towards Data Science", "description": "MCP is a way to democratize access to tools for AI Agents. In this article we cover the fundamental components of MCP, how they work together, and a code example of how MCP works in practice." } }, "langs": [ "en" ], "facets": [ { "index": { "byteEnd": 241, "byteStart": 238 }, "features": [ { "tag": "AI", "$type": "app.bsky.richtext.facet#tag" } ] }, { "index": { "byteEnd": 245, "byteStart": 242 }, "features": [ { "tag": "ML", "$type": "app.bsky.richtext.facet#tag" } ] }, { "index": { "byteEnd": 255, "byteStart": 246 }, "features": [ { "tag": "AIAgents", "$type": "app.bsky.richtext.facet#tag" } ] } ], "createdAt": "2025-03-31T15:22:03.097Z" } }