ATProto Browser

ATProto Browser

Experimental browser for the Atmosphere

Post

The Chinchilla paper (Training Compute-Optimal Large Language Models, Hoffmann et al., 2022) is widely regarded as a gold standard for empirically characterizing and optimizing scaling laws for large language models - arxiv.org/pdf/2203.15556

Apr 18, 2025, 3:00 PM

Record data

{
  "uri": "at://did:plc:jgpaztylmz3w3u2o2hfgiwm5/app.bsky.feed.post/3ln3v57n5322u",
  "cid": "bafyreif5mimv2jpkm6n2jbpecr6p6xi75snoboahe3oud24usdioqrzud4",
  "value": {
    "text": "The Chinchilla paper (Training Compute-Optimal Large Language Models, Hoffmann et al., 2022) is widely regarded as a gold standard for empirically characterizing and optimizing scaling laws for large language models - arxiv.org/pdf/2203.15556",
    "$type": "app.bsky.feed.post",
    "embed": {
      "$type": "app.bsky.embed.external",
      "external": {
        "uri": "https://arxiv.org/pdf/2203.15556",
        "title": "",
        "description": ""
      }
    },
    "langs": [
      "en"
    ],
    "reply": {
      "root": {
        "cid": "bafyreicnbspy3a77qdsbwovf5xaz3zc4rg7ibgz7gfjprhrdflesgq3gga",
        "uri": "at://did:plc:ydh54c62zg6nzo2w3xubeixr/app.bsky.feed.post/3lmzy32vnk22a"
      },
      "parent": {
        "cid": "bafyreibxs4p5nkbi35y56dsm7tppwtgcqg52qvkhv3r5etn3npigd7jvmq",
        "uri": "at://did:plc:jgpaztylmz3w3u2o2hfgiwm5/app.bsky.feed.post/3ln3utuzmpc25"
      }
    },
    "facets": [
      {
        "index": {
          "byteEnd": 242,
          "byteStart": 218
        },
        "features": [
          {
            "uri": "https://arxiv.org/pdf/2203.15556",
            "$type": "app.bsky.richtext.facet#link"
          }
        ]
      }
    ],
    "createdAt": "2025-04-18T15:00:10.581Z"
  }
}