Experimental browser for the Atmosphere
The Chinchilla paper (Training Compute-Optimal Large Language Models, Hoffmann et al., 2022) is widely regarded as a gold standard for empirically characterizing and optimizing scaling laws for large language models - arxiv.org/pdf/2203.15556
Apr 18, 2025, 3:00 PM
{ "uri": "at://did:plc:jgpaztylmz3w3u2o2hfgiwm5/app.bsky.feed.post/3ln3v57n5322u", "cid": "bafyreif5mimv2jpkm6n2jbpecr6p6xi75snoboahe3oud24usdioqrzud4", "value": { "text": "The Chinchilla paper (Training Compute-Optimal Large Language Models, Hoffmann et al., 2022) is widely regarded as a gold standard for empirically characterizing and optimizing scaling laws for large language models - arxiv.org/pdf/2203.15556", "$type": "app.bsky.feed.post", "embed": { "$type": "app.bsky.embed.external", "external": { "uri": "https://arxiv.org/pdf/2203.15556", "title": "", "description": "" } }, "langs": [ "en" ], "reply": { "root": { "cid": "bafyreicnbspy3a77qdsbwovf5xaz3zc4rg7ibgz7gfjprhrdflesgq3gga", "uri": "at://did:plc:ydh54c62zg6nzo2w3xubeixr/app.bsky.feed.post/3lmzy32vnk22a" }, "parent": { "cid": "bafyreibxs4p5nkbi35y56dsm7tppwtgcqg52qvkhv3r5etn3npigd7jvmq", "uri": "at://did:plc:jgpaztylmz3w3u2o2hfgiwm5/app.bsky.feed.post/3ln3utuzmpc25" } }, "facets": [ { "index": { "byteEnd": 242, "byteStart": 218 }, "features": [ { "uri": "https://arxiv.org/pdf/2203.15556", "$type": "app.bsky.richtext.facet#link" } ] } ], "createdAt": "2025-04-18T15:00:10.581Z" } }